53 research outputs found

    Reliable Linear, Sesquilinear, and Bijective Operations on Integer Data Streams Via Numerical Entanglement

    Get PDF
    A new technique is proposed for fault-tolerant linear, sesquilinear and bijective (LSB) operations on MM integer data streams ( M3M \geq 3), such as: scaling, additions/subtractions, inner or outer vector products, permutations and convolutions. In the proposed method, MM input integer data streams are linearly superimposed to form MM numerically-entangled integer data streams that are stored in-place of the original inputs. LSB operations can then be performed directly using these entangled data streams. The results are extracted from the MM entangled output streams by additions and arithmetic shifts. Any soft errors affecting one disentangled output stream are guaranteed to be detectable via a post-computation reliability check. Additionally, when utilizing a separate processor core for each stream, our approach can recover all outputs after any single fail-stop failure. Importantly, unlike algorithm-based fault tolerance (ABFT) methods, the number of operations required for the entire process is linearly related to the number of inputs and does not depend on the complexity of the performed LSB operations. We have validated our proposal in an Intel processor via several types of operations: fast Fourier transforms, convolutions, and matrix multiplication operations. Our analysis and experiments reveal that the proposed approach incurs between 0.03% to 7% reduction in processing throughput for numerous LSB operations. This overhead is 5 to 1000 times smaller than that of the equivalent ABFT method that uses a checksum stream. Thus, our proposal can be used in fault-generating processor hardware or safety-critical applications, where high reliability is required without the cost of ABFT or modular redundancy

    Generalized Numerical Entanglement For Reliable Linear, Sesquilinear And Bijective Operations On Integer Data Streams

    Get PDF
    We propose a new technique for the mitigation of fail-stop failures and/or silent data corruptions (SDCs) within linear, sesquilinear or bijective (LSB) operations on M integer data streams (M ⩾ 3). In the proposed approach, the M input streams are linearly superimposed to form M numerically entangled integer data streams that are stored in-place of the original inputs, i.e., no additional (aka. “checksum”) streams are used. An arbitrary number of LSB operations can then be performed in M processing cores using these entangled data streams. The output results can be extracted from any (M-K) entangled output streams by additions and arithmetic shifts, thereby mitigating K fail-stop failures (K ≤ ⌊(M-1)/2 ⌋ ), or detecting up to K SDCs per M-tuple of outputs at corresponding in-stream locations. Therefore, unlike other methods, the number of operations required for the entanglement, extraction and recovery of the results is linearly related to the number of the inputs and does not depend on the complexity of the performed LSB operations. Our proposal is validated within an Amazon EC2 instance (Haswell architecture with AVX2 support) via integer matrix product operations. Our analysis and experiments for failstop failure mitigation and SDC detection reveal that the proposed approach incurs 0.75% to 37.23% reduction in processing throughput in comparison to the equivalent errorintolerant processing. This overhead is found to be up to two orders of magnitude smaller than that of the equivalent checksum-based method, with increased gains offered as the complexity of the performed LSB operations is increasing. Therefore, our proposal can be used in distributed systems, unreliable multicore clusters and safety-critical applications, where robustness against failures and SDCs is a necessity

    Mitigating Silent Data Corruptions In Integer Matrix Products: Toward Reliable Multimedia Computing On Unreliable Hardware

    Get PDF
    The generic matrix multiply (GEMM) routine comprises the compute and memory-intensive part of many information retrieval, machine learning and object recognition systems that process integer inputs. Therefore, it is of paramount importance to ensure that integer GEMM computations remain robust to silent data corruptions (SDCs), which stem from accidental voltage or frequency overscaling, or other hardware non-idealities. In this paper, we introduce a new method for SDC mitigation based on the concept of numerical packing. The key difference between our approach and all existing methods is the production of redundant results within the numerical representation of the outputs, rather than as a separate set of checksums. Importantly, unlike well-known algorithm-based fault tolerance (ABFT) approaches for GEMM, the proposed approach can reliably detect the locations of the vast majority of all possible SDCs in the results of GEMM computations. An experimental investigation of voltage-scaled integer GEMM computations for visual descriptor matching within state-of-the art image and video retrieval algorithms running on an Intel i7- 4578U 3GHz processor shows that SDC mitigation based on numerical packing leads to comparable or lower execution and energy-consumption overhead in comparison to all other alternatives

    Cloud Instance Management and Resource Prediction For Computation-as-a-Service Platforms

    Get PDF
    Computation-as-a-Service (CaaS) offerings have gained traction in the last few years due to their effectiveness in balancing between the scalability of Software-as-a-Service and the customisation possibilities of Infrastructure-as-a-Service platforms. To function effectively, a CaaS platform must have three key properties: (i) reactive assignment of individual processing tasks to available cloud instances (compute units) according to availability and predetermined time-to-completion (TTC) constraints; (ii) accurate resource prediction; (iii) efficient control of the number of cloud instances servicing workloads, in order to optimize between completing workloads in a timely fashion and reducing resource utilization costs. In this paper, we propose three approaches that satisfy these properties (respectively): (i) a service rate allocation mechanism based on proportional fairness and TTC constraints; (ii) Kalman-filter estimates for resource prediction; and (iii) the use of additive increase multiplicative decrease (AIMD) algorithms (famous for being the resource management in the transport control protocol) for the control of the number of compute units servicing workloads. The integration of our three proposals into a single CaaS platform is shown to provide for more than 27% reduction in Amazon EC2 spot instance cost against methods based on reactive resource prediction and 38% to 60% reduction of the billing cost against the current state-of-the-art in CaaS platforms (Amazon Lambda and Autoscale)

    Toward Generalized Psychovisual Preprocessing For Video Encoding

    Get PDF
    Deep perceptual preprocessing has recently emerged as a new way to enable further bitrate savings across several generations of video encoders without breaking standards or requiring any changes in client devices. In this article, we lay the foundation for a generalized psychovisual preprocessing framework for video encoding and describe one of its promising instantiations that is practically deployable for video-on-demand, live, gaming, and user-generated content (UGC). Results using state-of-the-art advanced video coding (AVC), high efficiency video coding (HEVC), and versatile video coding (VVC) encoders show that average bitrate [Bjontegaard delta-rate (BD-rate)] gains of 11%-17% are obtained over three state-of-the-art reference-based quality metrics [Netflix video multi-method assessment fusion (VMAF), structural similarity index (SSIM), and Apple advanced video quality tool (AVQT)], as well as the recently proposed nonreference International Telecommunication Union-Telecommunication?(ITU-T) P.1204 metric. The proposed framework on CPU is shown to be twice faster than × 264 medium-preset encoding. On GPU hardware, our approach achieves 714 frames/sec for 1080p video (below 2 ms/frame), thereby enabling its use in very-low-latency live video or game streaming applications

    Multifocal Extensive Spinal Tuberculosis with Retropharyngeal Abscess

    Get PDF
    An unusual case of a young boy presenting with spinal tuberculosis involving cervical & thoracic vertebrae, along with retropharyngeal abscess is reported. The patient presented with progressive quadriparesis, fever, night sweat and cervical lymphadenopathy. The lab studies confirmed tuberculosis and patient received anti-tubercular chemotherapy. After development of quadriparesis, spinal surgery was done. The post operative course was uneventful and the patient is on gradual neurological recovery. DOI: http://dx.doi.org/10.3329/bsmmuj.v4i2.8646 BSMMU J 2011; 4(2):128-13

    Supernumerary, ectopic tooth in the maxillary antrum presenting with recurrent haemoptysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ectopic eruption of teeth in non-dental sites is a rare phenomenon and can present in a variety of ways such as chronic or recurrent sinusitis, sepsis, nasolacrimal duct obstruction, headaches, ostiomeatal complex disease and facial numbness. However, presentation of such patients with recurrent haemoptysis has not been described in the literature so far. We have described a case of an ectopic, supernumerary molar tooth in the maxillary antrum in a patient who initially presented with haemoptysis.</p> <p>Case presentation</p> <p>A 45-year-old male presented with a 2-month history of episodic haemoptysis. A pedunculated growth from the inferior nasal turbinate was seen with fibre-optic visualization. Although the patient was empirically started on antibiotic and anti-allergic therapy, there was no improvement after a few weeks and the patient had recurrent episodes of haemoptysis. Fibre-optic visualization was repeated showing bilateral osteomeatal erythema. Computed tomography scan of the paranasal sinuses demonstrated complete opacification of the left maxillary antrum along with a focal area of density comparable to bone. An ectopic, supernumerary molar tooth was found in the left maxillary antrum on endoscopic examination and subsequently removed. In addition, copious purulent discharge was seen. Post-operatively, the patient was treated with a 10-day course of oral amoxicillin-clavulanate. On follow-up, he reported resolution of symptoms.</p> <p>Conclusion</p> <p>Recurrent haemoptysis has not been described as a presentation for a supernumerary, ectopic tooth in literature before. We recommend that in patients with sinusitis-type of opacification of maxillary antrum and whose condition is refractory to conventional medical treatment, consideration should be given to the investigation of possible underlying anomalies as the cause of such symptoms. Presence of foreign bodies and ectopic teeth in paranasal sinuses can be reliably excluded with the use of appropriate radiological imaging and endoscopic examination.</p

    Intelligent control and security of fog resources in healthcare systems via a cognitive fog model

    Get PDF
    There have been significant advances in the field of Internet of Things (IoT) recently, which have not always considered security or data security concerns: A high degree of security is required when considering the sharing of medical data over networks. In most IoT-based systems, especially those within smart-homes and smart-cities, there is a bridging point (fog computing) between a sensor network and the Internet which often just performs basic functions such as translating between the protocols used in the Internet and sensor networks, as well as small amounts of data processing. The fog nodes can have useful knowledge and potential for constructive security and control over both the sensor network and the data transmitted over the Internet. Smart healthcare services utilise such networks of IoT systems. It is therefore vital that medical data emanating from IoT systems is highly secure, to prevent fraudulent use, whilst maintaining quality of service providing assured, verified and complete data. In this paper, we examine the development of a Cognitive Fog (CF) model, for secure, smart healthcare services, that is able to make decisions such as opting-in and opting-out from running processes and invoking new processes when required, and providing security for the operational processes within the fog system. Overall, the proposed ensemble security model performed better in terms of Accuracy Rate, Detection Rate, and a lower False Positive Rate (standard intrusion detection measurements) than three base classifiers (K-NN, DBSCAN and DT) using a standard security dataset (NSL-KDD)
    corecore